Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract DNA sequences were obtained from 32 blade-formingUlvaspecimens collected in 2018 and 2019 from four islands in the Galápagos Archipelago: Fernandina, Floreana, Isabela and San Cristóbal. The loci sequenced were nuclear encoded ITS and plastid encodedrbcL andtufA, all recognized as barcode markers for green algae. Four species were found,Ulva adhaerens,U. lactuca,U. ohnoiandU. tanneri, all of which have had their type specimens sequenced, ensuring the correct application of these names. Only one of these,U. lactuca, was reported historically from the archipelago.Ulva adhaerenswas the species most commonly collected and widely distributed, occurring on all four islands. Previously known only from Japan and Korea, this is the first report ofU. adhaerensfrom the southeast Pacific Ocean.Ulva ohnoiwas collected on three islands, Isabela, Floreana, and San Cristóbal, andU. lactucaonly on the last two.Ulva tanneriis a diminutive, 1–2 cm tall, high intertidal species that is easily overlooked, but likely far more common than the one specimen that was collected. This study of blade-formingUlvaspecies confirms that a concerted effort, using DNA sequencing, is needed to document the seaweed flora of the Galápagos Archipelago.more » « less
-
Abstract The benthic marine algae of the mainland coast of Ecuador are poorly known mainly due to a lack of collections. Currently, DNA barcoding is the preferred method to identify species of benthic marine algae worldwide, as morpho-anatomical characters are inadequate to distinguish many species of macroalgae. We used the red algal barcode rbc L-3P to identify specimens collected in January 2020 from Manabí, Ecuador as Neoizziella asiatica . This is the first member of the red algal order Nemaliales to be reported from the mainland coast of Ecuador and extends the distribution of this alga by 1,100 km to the south from Panama.more » « less
-
DNA sequencing of the plastid encoded rbcL gene supported by morpho-anatomical features reveals Gracilaria parva sp. nov. from Panama and Ecuador in the tropical eastern Pacific Ocean. In the rbcL phylogram, G. parva occurs in a clade sister to the western Atlantic species G. galatensis. Morphologically and anatomically, G. parva is distinguished from two similar, described tropical eastern Pacific species, G. brevis and G. veleroae by its small size, to 2.5 cm tall with branch widths mostly <2 mm occasionally to 4 mm, and by its two to three cell layered cortex. Gracilaria brevis and G. veleroae are taller, have wider branches, and a one cell layered cortex. DNA sequencing is needed to resolve the many diminutive species in the tropical eastern Pacific, particularly those occurring in turf communities. DNA sequencing of historical type specimens from the 19th and 20th centuries is also needed to correctly apply names in this region.more » « less
-
Increased standing macroalgal biomass in upwelling zones is generally assumed to be the result of higher nutrient flux due to upwelled waters. However, other factors can strongly impact macroalgal communities. For example, herbivory and temperature, via their effects on primary producers and the metabolic demands of consumers, can also influence macroalgal biomass and productivity, respectively. We assessed the effects of nutrient availability, temperature, and herbivory on macroalgal biomass on a subtidal nearshore rocky reef in the Galápagos Islands. We manipulated nutrient availability and herbivory in field experiments performed in two seasons: the first during a cool, upwelling season, and the second during a warm, non-upwelling season. Excluding macro-herbivores had a clear effect on standing macroalgal biomass, independent of season or nutrient availability. However, we found different interactive effects of nutrients and macro-herbivores between the two seasons. During the cool season, macroalgal biomass was significantly higher in herbivore exclusions than in open areas under ambient nutrient conditions. However, when nutrients were added, macroalgal biomass was not significantly different across all herbivore treatments, which suggests reduced top-down control of herbivores (hence a greater standing algal biomass) in open areas. In the warm season, macroalgal biomass was significantly higher in herbivore exclusions compared to open treatments, both with and without nutrient addition. Furthermore, biomass reached 11X in herbivore exclusions with nutrient additions, which hints nutrient limitation only during warm, low-upwelling conditions. Overall, our results support the hypothesis that macro-herbivores reduce macroalgal biomass in this system and suggest that nutrient availability, but not temperature, modulate herbivory.more » « less
An official website of the United States government
